

708-449-0700 708-449-0777 877-244-1777 Phone: Fax: Toll Free:

2 877-244-1777

Thermocouples Types · Conductor Combinations · Characteristics · National & International Standards

				Initial Calibration Tolerances per ASTM E-230					Approximate Change of emf per °C (Reference Junction at 0°C)				
Thermocouple	Conductor Combinations		National Standards	Temperature Range		Standard Special		μV/°C at					Thermocouple
туре	(+) Positive (-) Negative			°F	°C	(whichever is greater)			100°C	500°C	1000°C	Notes for Bare Wire Environment	туре
K	Nickel - Chromium Also known as: Chromel*, Thermokanthal KP*, NiCr, T1*, Tophel*	Nickel - Aluminum (Magnetic) Also known as: Ni-Al, Alumel*, Thermokanthal KN*, T2*, NiAl*	NIST Monograph 175 BS EN 60584.1 DIN EN 60584.1 NF EN 60584.1 JISC 1602	32 to 2300	0 to 1260	±2.2 or ±0.75%	±1.1 or ±0.4%		42	43	39	Most popular thermocouple type. Used in clean oxidizing and inert atmospheres.	K
Т	Copper	Copper - Nickel Also known as: Constantan, Advance*, Cupron*	NIST Monograph 175 BS EN 60584.1 DIN EN 60584.1 NF EN 60584.1 JISC 1602	32 to 700	0 to 370	±1 or ±0.75%	±0.5 or ±0.4%		46	-	-	Excellent for cryogenic and low temperatures. Mild oxidizing, reducing vacuum or inert.	Т
J	Iron (Magnetic) Also known as: Fe	Copper - Nickel Also known as: Nickel-Copper, Constantan, Advance*, Cupron*	NIST Monograph 175 BS EN 60584.1 DIN EN 60584.1 NF EN 60584.1 JISC 1602	32 to 1400	0 to 760	±2.2 or ±0.75%	±1.1 or ±0.4%		54	56	59	Not recommended for low temperatures. Used in reducing, vacuum or inert atmospheres.	J
Ν	Nickel - Chromium - Silicon Also known as: Nicrosil	Nickel - Silicon - Mag- nesium Also known as: Nisil	NIST Monograph 175 BS EN 60584.1 DIN EN 60584.1 NF EN 60584.1 JISC 1602	32 to 2300	0 to 1260	±2.2 or ±0.75%	±1.1 or ±0.4%		30	38	39	Used as an alternative to type K. Greater stability at higher temperatures.	Ν
Ε	Nickel - Chromium Also known as: Chromel*, To- phel*, Chromium, Nickel	Copper - Nickel Also known as: Nickel-Copper, Constantan, Advance*, Cupron*	NIST Monograph 175 BS EN 60584.1 DIN EN 60584.1 NF EN 60584.1 JISC 1602	32 to 1600	0 to 870	±1.7 or ±0.5%	±1 or ±0.4%		68	81	-	Has the highest EMF change per degree. Used in inert or oxidizing atmospheres.	Ε
S	Platinum - 10% Rhodium	Platinum	NIST Monograph 175 BS EN 60584.1 DIN EN 60584.1 NF EN 60584.1 JISC 1602	32 to 2700	0 to 1480	±1.5 or ±0.25%	±0.6 or ±0.1%		8	9	11	Used in high temperature applications in oxidizing or inert atmospheres.	S
R	Platinum - 13% Rhodium	Platinum	NIST Monograph 175 BS EN 60584.1 DIN EN 60584.1 NF EN 60584.1 JISC 1602	32 to 2700	0 to 1480	±1.5 or ±0.25%	±0.6 or ±0.1%		8	10	13	Used in high temperature applications in oxidizing or inert atmospheres.	R
В	Platinum - 30% Rhodium	Platinum - 6% Rhodium	NIST Monograph 175 BS EN 60584.1 DIN EN 60584.1 NF EN 60584.1 JISC 1602	1600 to 3100	870 to 1700	±0.5%	±0.25%		1	5	9	Commonly used in the glass industry. Used in high temperature applications in oxidizing or inert atmos- pheres.	В
G*	Tungsten	Tungsten 26% Rhenium	There are no officially recognized standards for Type G	32 to 4200	0 to 2315	Not Established	Not Established		5	16	21	Similar characteristics as Type C.	G*
C *	Tungsten 5% Rhenium	Tungsten 26% Rhenium	There are no officially recognized standards for Type C	32 to 4200	0 to 2315	±4.4 or ±1%	Not Established		15	18	18	High temperature applications. Used in a vacuum, inert or hydrogen atmosphere. Not recommended for temperatures below 800°F.	C *
D *	Tungsten 3% Rhenium	Tungsten 25% Rhenium	There are no officially recognized standards for Type D	32 to 4200	0 to 2315	Not Established	Not Established		13	20	20	Similar characteristics as Type C.	D *

*Types G, C and D are not officially recognized symbols.

* Equivalent Tradenames.

At a given temperature that is expressed in °C, the tolerance in °F is 1.8 times the tolerance in °C. Percentage based tolerances must be computed from the temperature in °C.

ENFormation on the second and is experimented in the second and th

Type K ±2.2°C or ±2%, Type E ±1.7°C or ±1%, Type T ±1°C or ±1.5%. Type J is not recommended for temperatures below 32°F.