Products

Thermocouple Sensors - Thermocouples to your Specifications

What is a thermocouple and how does it work?

A thermocouple is a relatively simple device used to measure temperature. Thermocouple sensors are made from two wires of different metals joined (welded) together to form a measuring junction (also known as a hot junction). This junction and the wires are usually enclosed in a metal sheath which is inserted into the medium where the temperature is to be measured. The opposite end of the two wires are also joined at a point known as the cold junction.

As the temperature at the hot junction changes, it creates a thermal gradient between the hot and cold junctions which generates an electron flow and a resultant electromotive force (EMF), measured in Millivolts. The voltage measured at the ends of the conductors is a function of the temperature difference along the conductor length. This effect is known as The Seebeck Effect.

When used with an appropriate thermocouple display unit, the cold junction is electronically referenced to 0ºC and a formula is applied to the millivolt signal, which can then be converted to °C or °F, using instrumentation. A more detailed explanation of How a Thermocouple Works can be found here.

Choose the right thermocouple probe for your appplication

We are a large manufacturer of thermocouple sensors. Having an enormous range of components in stock means we can make virtually any sensor you specify. We can ship custom built thermocouples typically within 5 days or sooner.

Mineral Insulated
Thermocouple Sensors
Mineral Insulated Thermocouples

Our most popular thermocouple style. Rugged sensors, ideal for most applications. Vast choice of terminations e.g. pot seals, Wire, connectors, heads etc.

Swaged Tip
Thermocouple Sensors
Swaged Tip Thermocouples

Fast temperature response time thermocouple probes ideal for industrial and other applications.

Miniature
Thermocouples
Miniature Thermocouple Sensors

Ideal for precision temperature measurements where minimal displacement and a fast response is required.

Heavy Duty
Thermocouples
Heavy Duty Thermocouple Sensors

For industrial applications such as furnaces, kilns, ovens, boilers, flues etc. Many types of sheath material available.

High Temperature Thermocouple Sensors High Temperature Thermocouple

Various thermocouples specifically for high temperature applications. Wide choice of sheath materials and terminations.

General Purpose
Thermocouples
Thermocouple - General Purpose

A wide range of thermocouples to suit many applications. Hand held, surface, bayonet, bolt, low cost simple styles, patch sensors etc.

AMS2750 Approved
Thermocouples
AMS2750 approved ThermocouplesCalibrated thermocouples designed to meet the high quality and accuracies demanded for heat treatment and vacuum furnace applications
Industrial Vacuum
Thermocouple Sensors
Vacuum Thermocouples Ceramic sheathed calibrated thermocouples designed specifically in vacuum furnace applications with very low leak rates
ATEX/IECEx Approved
Thermocouples
ATEX approved ThermocouplesA large range of thermocouples with a variety of terminations such as pot seal, terminal heads etc.

More Information about Thermocouples

How does a thermocouple work? Thermocouple Color Codes Thermocouple Types Thermocouple Tolerances


There are many types of thermocouple sensors available in a wide range of designs and constructions making them a practical choice for almost all temperature measurement applications and temperature ranges in industry, science and beyond.

Practical Thermocouple Sensors / Probes

Popularity of the Thermocouple Sensor

The reasons for the popularity of thermocouples are not just the existence of a range of types designed to cover almost all temperature, environmental and accuracy requirements, or the fact that they are small. Others include the ease with which they can be made and applied, and the availability of a vast assortment of housings and special packages to match almost every imaginable application.

For simple applications, thermocouples can easily be made from lengths of bare thermocouple wire or insulated cable, the insulation material being selected for compatibility with the application, and likewise the cable itself. As for wire diameter, 0.004” to 0.118” OD or larger for industrial use is common.

The measuring junction is best constructed by welding the two wires together. Soldering or twisting are less satisfactory, although with the aid of a clamping screw in a connecting block, greater security can be obtained. The key to success is a good electrical connection which does not disrupt the composition of the thermocouple wires themselves. Bear in mind the expected operating conditions for the measuring junction.

Base Metal Thermocouple Sensors

Base metal thermocouples are usually welded electrically in an argon atmosphere, while platinum thermocouples can be welded using a small oxy-hydrogen flame. Beyond this, base metal thermocouple wires are normally supplied ready annealed and are thus prepared for use directly after welding. The same is not usually the case with the platinum equivalents which therefore have to be annealed after inserting the wires into the insulators and making up the junction.

At the other end of the cables, each thermocouple wire can be joined to a copper wire to form the reference junction. Again, welding is the best bet, but silver soldering using a very small quantity of solder in paste form together with a miniature flame is a reasonable alternative - as long as all traces of corrosive flux are removed. The junctions can then be fitted into closed end tubes or potted for immersion in an ice-water mixture.

This method of thermocouple construction is simple, versatile, and fine for experimentation in the laboratory. Reasonable accuracies can be expected.

thermocouple video

Thermocouple Sensor Construction

Industrial Thermocouple
Figures 1.1: A Typical Industrial Thermocouple





Thermocouple Probe and Head
Figures 1.2: Enclosed Thermocouple Probe and Head





Hand Held Probe and Pipe Probe
Figures 1.3: Hand Held Probe and Pipe Probe





High Temperature and Heavy Duty Sensor
Figures 1.4: Heavy Duty Industrial metal Sheathed and High Temperature Ceramic Sheathed thermocouples with terminal Head Assemblies





Mineral Insulated Thermocouple Construction
Figures 1.5: Typical Mineral Insulated Thermocouple Sensor Construction





typical Thermocouple Connectors
Figures 1.6: Typical thermocouple Connectors





 Thermocouple Guide


Style of Thermocouples

However, DIY thermocouples are not for everyone, nor are they necessarily ideal for industrial applications. For industrial use, quantities, installation methods, maintenance, and replacement must be considered. It is more common to select a custom manufactured thermocouple from the wide variety described.

Thermocouples may be insulated with anything from PVC to ceramics depending on the application (see Part 2, Section 2). Frequently, the thermocouple conductors will be fitted into a closed end probe of some kind, outer sheath (protection tube), or thermowell made from a suitable heat-resistant alloy or refractory material (Figure 1.2).

There are almost as many sizes and styles as there are applications. Standard sizes range from 0.010” to 0.250” with larger diameters of 1” and larger available to cover all of the possible requirements. As for styles, there are general purpose welded sheath probes, bolt style probes, hand-held probes, surface probes, moving surface probes and these can all be encased in a metal sheath. There are also several junction types and connector systems available.

Additionally, there are sheathed probes for autoclave temperature measurement (incorporating flexible stainless steel conduit and pressure entry glands), bayonet and compression fitting style thermocouples for the plastics and other industries) and heavy duty and high temperature industrial sheathed thermocouples (Figure 1.4) with options like head-mounting terminal assemblies and thermowell extension pieces.

In all cases, great care is taken by the suppliers to ensure that the conductors are correctly manufactured, and installed into the sensor housing under closely controlled conditions. Thus, the amount of change the heated region of the conductors may experience during service (which affects uniformity) is minimized. This is important, since it is this unit that will almost certainly be sitting in the area of greatest temperature gradient, and therefore contributing to most of the output voltage (see Part 1, Section 2).

Mineral insulated Thermocouples

An alternative form of construction uses mineral insulated (MI) cable, where the thermocouple conductors are embedded in a closely compacted, inert mineral powder, and surrounded by a metal sheath (like stainless steel or nickel alloy) to form a hermetically sealed assembly. The sheath functions as a useful protective cover. This type of device is available with sheath diameters ranging from 0.010” to 0.5”. Lengths can be from a few inches to hundreds of feet.

For rather special applications, where high speed response is needed, it can be advantageous for an MI thermocouple to be manufactured with the junction itself exposed. However, this style of junction requires the expertise and skill of an experienced technician.

Thermocouple sensors are often provided with a connection or terminal box which allows convenient linking to the rest of the circuit. Alternatively, a special plug and female connector can be supplied with connecting pins made from the appropriate thermoelectric material. (Figure 1.6).



Thermocouple Sensor Insulation

for Thermocouple Probes

Although there are applications where thermocouples can be used without protection, in most they must be protected from the environment and media in which they are being asked to measure by the use of insulation materials often with protective sheaths. These latter, provided in the form of tubes or whatever, also serve to protect the thermocouple from mechanical damage.

As a general rule of thumb, engineering practice has it that an exposed thermocouple junction is only recommended for the measurement of static or flowing non-corrosive gas temperatures where fast response is a key issue.

Beyond this, insulated thermocouple junctions are more suitable, certainly for corrosive gases and liquids, accepting that thermal response is slower whether an outer sheath is involved or not. Incidentally, grounded thermocouple junctions, where the thermocouple elements are welded to the sheath tip, are preferred for corrosive gases, liquids and high pressure applications where faster thermal response is required.



Insulating Materials for Thermocouple Wires

Popularity of the Thermocouple Sensor

There is a wide choice of insulating materials available for thermocouples. When practical, the insulation will be color coded in accordance with the related standard. Although there is no international standard for materials, engineering practice dictates the use of six main materials.

PVC can be used over the range -30 to +105°C, and is available in many different types of construction. PFA offers a greater temperature range, covering from -273 to +250°C, or 300°C for short periods.

For higher temperatures, we find varnish impregnated glass fiber, which handles from -50 to +400°C, while unvarnished glass fiber takes this up to 500°C and in some cases, 800°C. Throughout the above, all of the standard thermocouple types can be accommodated.

Click here for detailed information on Insulated Thermocouple Wire!


High Temperature Thermocouple Sensors

For higher temperature realms of industrial applications, ceramic insulators are available in various forms. Porcelain ceramic, 2-hole insulators can be used on base metal thermocouple wires of approximately 0.040” and larger. Meanwhile, aluminum silicate (Mullite) insulators are frequently used with Type K thermocouple wires, particularly in furnace type applications - whether the sensor is unprotected or housed in metal or ceramic outer sheaths/tubes. As for platinum based thermocouples, high purity alumina 2-hole insulators are generally preferred to reduce the risk of contamination. Click here for more details on ceramic insulated thermocouples.



Recommended Thermocouple Sensors for General Use

Mineral insulated Thermocouples

The most popular insulation and thermocouple style for industry today is the mineral insulated (MI) style. These are comprised of a seamless metal sheath enclosing highly compacted mineral insulant powder (typically, magnesium oxide) which supports and electrically insulates the thermocouple wires held inside. Click here for details of available sensors.

Temperature ranges covered are from -200°C to +1250°C. These assemblies provide a high integrity, compact, hermetically sealed, self armored construction. They can be bent or formed and are suitable for the most difficult operating conditions. MI cable is generally available with two to six conductors, and with diameters from 0.010” to 0.5”.

Advantages of the Mineral Insulated Thermocouple

There are many advantages with this construction. They include small size, ease of installation (they can be bent, twisted and flattened without impairing performance), good mechanical strength, excellent isolation of the junction from hostile environments, high long term accuracy and stability, fast response and good insulation resistance. They are also readily available off the shelf and are reasonably priced. They are thus ideal for accurate measurement in a very wide range of applications, including extreme environments, like high vibration and high pressure/vacuum.

Additionally, they allow the use of a wide range of outer sheaths and seal termination styles to suit tremendously diverse operating conditions. Sheath materials include stainless steels, Inconel, and the Nicrobell alloys. The selection of the sheath material is based on the temperature and environment (click here for more details). Finally, platinum-rhodium alloy sheaths are often used with platinum thermocouples. The finished assembly length can be from a few inches to hundreds of feet. Beyond this, all of the usual thermocouple alloy combinations are available as MI thermocouples - both rare and base metal types. Also, the measuring junction can be exposed or insulated from the sheath, or grounded to the sheath. The insulated version has an insulation resistance of over 100M Ohms. By being insulated, ground loops on associated instrumentation are prevented. Although, with the grounded junction, the response time is faster.

Limitations of the Mineral Insulated Thermocouple



On the down side, limitations can include problems due to the different thermal coefficients of expansion of the stainless steel sheath variants, for example, as compared particularly to the Type K and N thermocouple materials - sometimes leading to premature mechanical fatigue failure. Also ironically, with both the stainless steels and Inconel 600 sheaths, there are possibilities of material contamination problems due to vapor diffusion of the elements, leading to actual contamination of the thermocouple wires by the sheath material itself.

There can also be problems relating to the ingress of water vapor resulting in reduced insulation resistance, causing calibration instability and possibly premature failure. This latter phenomenon, however, is really a matter of care in manufacture and repair.

Higher Temperature Applications

Special sheathing alloys have been developed to deal with these limitations, particularly for higher temperature applications with Type K and N thermocouples. These include the Nicrotherm DTM alloy which take on the inherent advantages of Type N thermocouple materials.

 This means that MI thermocouples using Nicrotherm DTM can last four to six times longer than their stainless steel based alternatives. And, remembering the transmutation reductions achieved using Nicrotherm DTM, sheaths constructed from this material also out-perform Inconel 600 in terms of long term drift due to thermocouple wire contamination.

 In general, it is recommended that the smallest diameter mineral insulated metal sheathed thermocouples should be avoided if possible for very high temperature or corrosive environment measurements. There does seem to be a correlation between MI cable diameter and its survival and long term performance. For details of sheath materials and available configurations for non mineral insulated thermocouples click here.

Thermocouple Probes - Mineral Insulated Temperature Sensors
Type K thermocouples with Basic End Seal 0.010" to 0.313" dia. Type K Thermocouple with basic seal

Internal seal with bare conductors

Type K thermocouples with Pot Seal 0.010" to 0.313" dia. Type K Thermocouple with pot seal

a large selection of plain and threaded pot seals supplied with tails or extension Wire (PVC, FEP, Fiberglass etc.)

Type K thermocouples with Miniature Plug 0.010" to 0.125" dia. Type K Thermocouple with mini plug

fitted with a miniature thermocouple plug rated to either 428ºF, 572ºF, 797ºF or 1112ºF

Type K thermocouples with Miniature Jack 0.010" to 0.125" dia. Type K Thermocouple with mini jack

fitted with a miniature thermocouple jack rated to either 428ºF, 572ºF, 797ºF or 1112ºF

Type K thermocouples with Standard Plug 0.062" to 0.250" dia. Type K Thermocouple with standard plug

fitted with a standard thermocouple plug rated to either 428ºF, 572ºF, 797ºF or 1112ºF

Type K thermocoupleswith Standard Jack 0.062" to 0.250" dia.Type K Thermocouple with standard socket

fitted with a standard thermocouple jack rated to either 428ºF, 572ºF, 797ºF or 1112ºF

Type K thermocouples with Micro die cast alloy head 0.125" to 0.250" dia.

Micro die cast alloy screw down terminal head with ceramic terminal block. Suitable for simplex and duplex assemblies

Type K thermocoupleswith Miniature IP67 die cast head 0.125" to 0.313" dia.K Type Sensor with mini headWeatherproof die cast alloy screw top terminal head with ceramic terminal block. Suitable for simplex and duplex assemblies Type K thermocouples with Standard IP67 die cast head 0.188" to 0.500" dia. K Type Sensor with alloy headWeatherproof die cast alloy screw top terminal head with ceramic terminal block. Suitable for simplex, duplex and triplex assemblies Type K thermocouples with IP67 heavy duty cast iron head 0.188" to 0.500"dia. Weatherproof cast iron screw top terminal head with ceramic terminal block. Suitable for simplex, duplex and triplex assemblies Type K thermocoupleswith spring loaded terminal block 0.125", 0.188", 0.250" and 0.313" dia.Type K Thermocouple with terminal blockSpring loaded insert assemblies. The end seal is incorporated into a terminal block for mounting into any standard terminal head


Common Misspellings



Thermocouple is often misspelled with variants including; thermal couple, thermacouple, thermo couple and thermal coupler.


BACK TO TOP
Products

Contact Us

About TC

FREE Guide

Privacy Policy

Terms and Conditions

Sitemap
FREE Wallchart Guide

Join over 500,000 engineers and buyers who have already received our FREE 72 page 12" X 16 ½" Guide to Thermocouple and Resistance Thermometry

Company Name
  Address 1
Your Name
  Address 2
Title / Dept.
  State
Email
  ZIP Code
Telephone
  Country
Company Name
Your Name
Title / Dept.
Address 1
Address 2
State
ZIP Code
Country
Email
Telephone

We will only ever use the information you provide to occasionally contact you regarding our products and we will never disclose your details to a third party. Our privacy policy can be viewed here



I agree to the terms and conditions listed in the Privacy Policy

View our ISO 90001/2008 Certficate
View our ISO 90001/2008 Certficate




© 2006- TC Measurement and Control Inc., PO Box 685, Hillside, IL 60162, United States
Tel.: 877 249 1777, Fax: 708 449 0777, Email: info@tc-inc.com